【演講】2019/11/19 (二) @工四816 (智易空間),邀請到Prof. Geoffrey Li(Georgia Tech, USA)與Prof. Li-Chun Wang(NCTU, Taiwan) 演講「Deep Learning based Wireless Resource Allocation/Deep Learning in Physical Layer Communications/Machine Learning Interference Management」
IBM中心特別邀請到Prof. Geoffrey Li(Georgia Tech, USA)與Prof. Li-Chun Wang(NCTU, Taiwan)前來為我們演講,歡迎有興趣的老師與同學報名參加!
演講標題:Deep Learning based Wireless Resource Allocation/Deep Learning in Physical Layer Communications/Machine Learning Interference Management
演 講 者:Prof. Geoffrey Li與Prof. Li-Chun Wang
時 間:2019/11/19(二) 9:00 ~ 12:00
地 點:交大工程四館816 (智易空間)
活動報名網址:https://forms.gle/vUr3kYBDB2vvKtca6
報名方式:
費用:(費用含講義、午餐及茶水)
1.費用:(1) 校內學生免費,校外學生300元/人 (2) 業界人士與老師1500/人
2.人數:60人,依完成報名順序錄取(完成繳費者始完成報名程序)
※報名及繳費方式:
1.報名:請至報名網址填寫資料
2.繳費:
(1)親至交大工程四館813室完成繳費(前來繳費者請先致電)
(2)匯款資訊如下:
戶名: 曾紫玲(國泰世華銀行 竹科分行013)
帳號: 075506235774 (國泰世華銀行 竹科分行013)
匯款後請提供姓名、匯款時間以及匯款帳號後五碼以便對帳
※將於上課日發放課程繳費領據
聯絡方式:曾紫玲 Tel:03-5712121分機54599 Email:tzuling@nctu.edu.tw
Abstract:
1.Deep Learning based Wireless Resource Allocation
【Abstract】
Judicious resource allocation is critical to mitigating interference, improving network efficiency, and ultimately optimizing wireless network performance. The traditional wisdom is to explicitly formulate resource allocation as an optimization problem and then exploit mathematical programming to solve it to a certain level of optimality. However, as wireless networks become increasingly diverse and complex, such as high-mobility vehicular networks, the current design methodologies face significant challenges and thus call for rethinking of the traditional design philosophy. Meanwhile, deep learning represents a promising alternative due to its remarkable power to leverage data for problem solving. In this talk, I will present our research progress in deep learning based wireless resource allocation. Deep learning can help solve optimization problems for resource allocation or can be directly used for resource allocation. We will first present our research results in using deep learning to solve linear sum assignment problems (LSAP) and reduce the complexity of mixed integer non-linear programming (MINLP), and introduce graph embedding for wireless link scheduling. We will then discuss how to use deep reinforcement learning directly for wireless resource allocation with application in vehicular networks.
2.Deep Learning in Physical Layer Communications
【Abstract】
It has been demonstrated recently that deep learning (DL) has great potentials to break the bottleneck of the conventional communication systems. In this talk, we present our recent work in DL in physical layer communications. DL can improve the performance of each individual (traditional) block in the conventional communication systems or jointly optimize the whole transmitter or receiver. Therefore, we can categorize the applications of DL in physical layer communications into with and without block processing structures. For DL based communication systems with block structures, we present joint channel estimation and signal detection based on a fully connected deep neural network, model-drive DL for signal detection, and some experimental results. For those without block structures, we provide our recent endeavors in developing end-to-end learning communication systems with the help of deep reinforcement learning (DRL) and generative adversarial net (GAN). At the end of the talk, we provide some potential research topics in the area.
3.Machine Learning Interference Management
【Abstract】
In this talk, we discuss how machine learning algorithms can address the performance issues of high-capacity ultra-dense small cells in an environment with dynamical traffic patterns and time-varying channel conditions. We introduce a bi adaptive self-organizing network (Bi-SON) to exploit the power of data-driven resource management in ultra-dense small cells (UDSC). On top of the Bi-SON framework, we further develop an affinity propagation unsupervised learning algorithm to improve energy efficiency and reduce interference of the operator deployed and the plug-and-play small cells, respectively. Finally, we discuss the opportunities and challenges of reinforcement learning and deep reinforcement learning (DRL) in more decentralized, ad-hoc, and autonomous modern networks, such as Internet of things (IoT), vehicle -to-vehicle networks, and unmanned aerial vehicle (UAV) networks.
Bio:
Dr. Geoffrey Li is a Professor with the School of Electrical and Computer Engineering at Georgia Institute of Technology. He was with AT&T Labs – Research for five years before joining Georgia Tech in 2000. His general research interests include statistical signal processing and machine learning for wireless communications. In these areas, he has published around 500 referred journal and conference papers in addition to over 40 granted patents. His publications have cited by 37,000 times and he has been listed as the World’s Most Influential Scientific Mind, also known as a Highly-Cited Researcher, by Thomson Reuters almost every year since 2001. He has been an IEEE Fellow since 2006. He received 2010 IEEE ComSoc Stephen O. Rice Prize Paper Award, 2013 IEEE VTS James Evans Avant Garde Award, 2014 IEEE VTS Jack Neubauer Memorial Award, 2017 IEEE ComSoc Award for Advances in Communication, and 2017 IEEE SPS Donald G. Fink Overview Paper Award. He also won the 2015 Distinguished Faculty Achievement Award from the School of Electrical and Computer Engineering, Georgia Tech.
Li-Chun Wang (M'96 -- SM'06 -- F'11) received Ph. D. degree from the Georgia Institute of Technology, Atlanta, in 1996. From 1996 to 2000, he was with AT&T Laboratories, where he was a Senior Technical Staff Member in the Wireless Communications Research Department. Currently, he is the Chair Professor of the Department of Electrical and Computer Engineering and the Director of Big Data Research Center of of National Chiao Tung University in Taiwan. Dr. Wang was elected to the IEEE Fellow in 2011 for his contributions to cellular architectures and radio resource management in wireless networks. He was the co-recipients of IEEE Communications Society Asia-Pacific Board Best Award (2015), Y. Z. Hsu Scientific Paper Award (2013), and IEEE Jack Neubauer Best Paper Award (1997). He won the Distinguished Research Award of Ministry of Science and Technology in Taiwan twice (2012 and 2016). He is currently the associate editor of IEEE Transaction on Cognitive Communications and Networks. His current research interests are in the areas of software-defined mobile networks, heterogeneous networks, and data-driven intelligent wireless communications. He holds 23 US patents, and have published over 300 journal and conference papers, and co-edited a book, “Key Technologies for 5G Wireless Systems,” (Cambridge University Press 2017).
同時也有2部Youtube影片,追蹤數超過19萬的網紅OmegaGamesWiki™,也在其Youtube影片中提到,PS4 PROのPREY(2017版)のHard Mode No Damageプレイ動画です、Part 22。 メインミッション「再起動(後半)」とサイドミッション「ミケイラ・イリュ-シンを助ける」の攻略動画です。 Side Mission 「ミケイラ・イリュ-シンを助ける」の関連行動: ・パワ...
dr z amp 在 二本貓 UrbanCat Facebook 的精選貼文
昨天晚上參觀了 #DAPStudio
座落在苑裡鄉村裏頭的 #世外桃源 #奇觀 的驚喜。
錄音老師看起來陽光到不行,聽著那裡的作品,搭配有個真的小小朋友不時跑進來看看我們正在聽什麼音樂的感覺,害我以為我們在卡通世界裡面嗎,哈的。
有遠從台南的樂團在這神秘的錄音室發生的專輯,也有高中生們宇宙及熱血噴張的創作,(高中生耶!!!!!!!!!!好猛好猛好猛!)
我已在用力期待能趕快存到更多錢,去DAP Studio做新的作品們了拉!!! !!! !!!
而且右上角的人有點眼熟。
by覺得錄音老師不喝酒超酷的 歐
工作室器材清單
DRUM SET
DW Performance Series 5-piece
Punchy tones from HVX maple shells
Engineered for superior sound
8" x 10" Tom
9" x 12" Tom
12" x 14" Floor Tom
14" x 16" Floor Tom
18" x 22" Kick Drum
SAKAE Road Anew
(6 ply Asian Mahogany shells with
a single Cherrywood ply on the inside top.)
RAK2218 18 x 22 Kick
RAF1615 15 x 16 Floor
RAT1208 8 x 12 Tom
RAT1007 7 x 10 Tom
SAKAE PAC-D
PDK1616 16 x 16 Kick
PDF1311 11 x 13 Floor Tom
PDT1007 7 x 10 Tom
PDT1007 6 x 8 Tom
Tama Warlord Exotix Masai drumset
(limited edition , only 100 kit made worldwide )
18x22 Kick Drum
7 x 8 Rack Tom
8 x10 Rack Tom
9 x12 Rack Tom
12x14 Floor Tom
14x16 Floor Tom
TAYE StudioMapal Custom Oder
SM2218 18x22 Kick
SM1616 16x16 Floor
SM1310 10x13 Tom
SM1209 9x12 Tom
SM1085 8.5x10 Tom
SM0808 8x 8 Tom
TAYE StudioBirch Custom Oder
SB2216 16x22 Kick
SM1616 16x16 Floor
SM1311 11x13 Tom
SM1210 10x12 Tom
PEARL Export ELX
100% Poplar Shell
2016B 16x20 Kick
1414F 14x14 Floor
1209T 9x12 Tom
1008T 8x10 Tom
Stainless Steel Timbales
14"x6.5"
12"x4"
10"x3.5"
Percussion
LP 804Z-AW 9 3/4"
LP 565ZF-TRG 11"
LP 565ZF-TRG 12.5"
LP A646B CHKC 10"
LP A646B CHKC 11"
LP M201 RW
Thunder SP-8604 6"+8"+10"
Thunder Chimes 36 Bar
Thunder Mounted Tyri-Tone Agogo Bell
Thunder Tyri-Tone Agogo Bell
Thunder Cow-Bell 4"
Thunder Cow-Bell 5"
Thunder Cow-Bell 6"
Thunder Cow-Bell 7"
Thunder Cow-Bell 8"
Hardware
DW 5500D Hi-hat Stand
DW 3900 Tom Stands
DW 3700 straight/boom cymbal stand
DW 3710 straight stand
Pearl DR-503 RACK
Pearl BC-2030 Boom Cymbal Stand
Pearl Hi-Hat Stands RH-2000
SAKAE HH05
SAKAE BS05
SAKAE SS05
SAKAE HH10
SAKAE BS10
SAKAE CS10
SAKAE SS10
TAYE HH6020 Two-Leg
TAYE SB6000BT
TAYE BS6300BT-CW
TAYE ACS-PK007
TAYE DDT80R
TAYE Cow Bell Stand
Snare Drum
CRAVIOTTO Johnny C. Series Snare Drums 14x5.5
DW CL1405SD/EX-QUILT MAPLE
SONOR SQ1406SD/EHI-AW
PEARL Reference Wood RF1465S/C
PEARL Chad Smith Signature Snare Drum 5x14
PEARL EX1405
TAMA Warlord Exotix Masai 14"x6"
TAYE TSWNM1407S-NW: Walnut/Maple Hybrid
TAYE TSWMH1407S-CM: Walnut/Mahogony Hybrid
TAYE TSMWNMS-NM: Maple/Walnut Hybrid Natural Maple Finish
TATE TSBBMPS-NB: Bubinga/Maple Hybrid Natural Bubinga Finish
TAYE TSMMHMS-GA: Maple/Mahogany Hybrid Natural Amber Finish
TAYE Stainless steel 1405
TAYE Studio Maple 1406
TAYE Studio Birch 1465
Ludwin Supraphonic 5x14
SAKAE PDS1255 12 x 5.5 Snare
SAKAE RAS1455 14x5.5 Snare
Bass Drum Padals
DW MDD2 Double
DW MDD
DW 5000 Double
Pearl P-3002 Double (DEMON)
Pearl P-2002 Double
Pearl P-120P
TAYE XP2 Double
TAYE PSK602C Double
TAYE SPK601C
SAKAE DP10
Crush M4
Gibraltar Catapult GCLMSP
Cymbals
Hi-Hat
PAISTE 14" 2002 Sound Edge
Zildjian 14" A Custom
Zildjian 14" K Custom Session
Zildjian 13 1/4" K Custom Hybrid
Zildjian 14" ZXT-TI
SABIAN 14"Hand-Hammered Regular
MEINL 14" AMUN Medium
MEINL 14" Sound Master
MEINL 14" HCS HH
MEINL 14" Headline Brass
Ride
Zildjian 20" K HEAVE
Zildjian 20" K Custom Hybrid
Zildjian 20" ZXT-TI POP
SABIAN 20" Hand-Hammered Medium
SABIAN 20" B8
MEINL 21" AMUN Medium
MEINL 20" Sound Maste
MEINL 20" HCS
MEINL 20" Headline Brass
Crash
Zildjian 14" A Custom Medium
Zildjian 15" A Thin
Zildjian 16" A Custom Fast
Zildjian 16" A Medium
Zildjian 18" A Thin
SABIAN 16" Hand-Hammered Medium
SABIAN 18" B8
MEINL 16" Sound Maste
MEINL 18" AMUN Medium
MEINL 18" MCS Medium
MEINL 16" HCS
MEINL 16" Headline Brass
FX
Zildjian 10" SPIRAL STACKER
Zildjian 16" A EFX
SABIAN 16" B8 PRO O-Zone
China
Zildjian 18" Z Custom
Zildjian 18" A Custom 漢家兒 Low
Zildjian 20" A Custom 漢家兒 High
MEINL 16" SoundCustom
MEINL 18" SoundCustom
MEINL 20" SoundCustom
MEINL 18" MCS
Splash
Zildjian 6" A Custom
Zildjian 10" K
Zildjian 10" ZXT Flash
Zildjian 10" ZXT-Ti Flash
Zildjian 10" ZXT-Ti Rock
Zildjian 8" ZHT
Zildjian 10" ZHT China
Guitar
Alvarez MD65 CE
Fender American Standard Stratocaster, Maple USA
Gibson USA 1959 LP-STD Reissue Figured Top FTB Vintage
Ibanez RGTHRG2 2006
Paul Reed Smith CUSTOM 22 10Top
Parker FLY USA
Farida D-16/12
K.Yaini DY 75DCB 1993 JAPAN
Taylor 414ce
AMPS
Combo Amps
Fender Twin Reverb II
Roland JC-120
TraceElliot 715
TraceElliot BOX
VTH The Classic 18
Marshall 8015
Orange Crush CR120C
Amp Heads
Orange Rockerverb 100H MKII DIVO
Mesa/Boogie Triple Rectifier 150-Watt Tube Head
Blackstar HT-5H
Crate V33H
Hartke LH1000 1000-Watt
TraceElliot AH-1000-12
Marshall JCM 2000 Triple Super Land
Marshall JCM 2000 Dual Super Lead
Marshall Vintage Modern 2466
LANEY GH-100L
Ibanez TSA15H 15-Watt Tube Head
Amp Cabinets
Orange PPC412 4x12" 240-Watt Speaker Cabinet
Mesa/Boogie 4x12 Rectifier Standard
Blackstar HT-110
Blackstar ONE 412 Cabinet
Vox V212BN 2X12 Cabinet
Fender DT 412
Egnater Tourmaster 412A 280W 4x12 Speaker
Hartke Transporter 410 4X10
Hartke Transporter 115 1X15
TraceElliot 1048T 4X10
TraceElliot 1528 2X15
TraceElliot 1084 8X10
TraceElliot 1818T 1X18
Marshall 1960A 4x12" 300-Watt Angled Extension Cabinet
Marshall 1960B 4x12" 300-Watt Straight Extension Cabinet
LANEY GS412PS
Ampeg SVT-810E 8x10" 800-Watt Extension Cabinet
Ibanez TSA112C 1x12" 80-Watt Cabinet
Studio Microphones
AKG C1000S
AKG C3000
AKG C414II *3
AKG D112 *2
LEWITT DTP 340 TT *3
LEWITT DTP 640 REX
LEWITT MTP 440 DM *2
LEWITT LCT 340 *2
LEWITT LCT 940 TUBE & FET
MXL V67Q Stereo
SHURE SM57 *4
SHURE SM7B
SHURE BETA 52A
SHURE BETA 56A
SHURE BETA 58A
Sennheiser MD421-II-4 *5
Sennheiser e906
Sennheiser ME62*2
Sennheiser ME64*4
Sennheiser K6P *2
Sennheiser K6 *2
SE Electronics 2200A *2
SONTRONICS DELTA
SONTRONICS SIGMA
SONTRONICS DM-1B
SONTRONICS HALO
YAMAHA SUBKICK
Microphones Stand
SE Electronics Stand 1
Hercules MS300B*2
Hercules MS120B*8
Hercules MH100B*6
Hercules MH101B*10
DAP Ground Stand *2
DAP XY Stand
DAP Z-High Stand *3
Recording
AVID Digidesign C | 24
AVID Digidesign 003 Factory (AD/DA) *2
ALTO HPA6
Behringer MIC2200
Behringer MDX2400
DBX 586 Vacuum Tube PreAmplifier
DBX 266XL *6
Drawmer MX40
Focusrite TwenTrak Pro
Focusrite Scarlett 2i2 *6
KORG DT-7
KORG Pitchblack Pro
LINE6 X3 Pro
MOTU 8PRE
Monster Power 3600 MKII
Monster Power PRO 2500 *3
TL Audio IVORY-2 5050 *2
Samson DI *2
SONTRONICS SONORA 2
ROLAND VT-12
DAW
Ableton Live 9 Lite
ProTools 10
ProTools 12
CueMix DSP
WAVE
BFD
Monitor
ADAM A7
AVION AN/16iAVION A16
Avantone Audio Active MixCubes
Roland CM-220 CUBE Monitor 2.1
FOSTEX PM0.4n
AKG K240S
SONY MDR CD900ST *5
Auralex
Computers
APPLE MAC
DELL 25" AH-IPS 2K Monitor*2
DELL 24" AH-IPS Monitor *3
DELL 23" AH-IPS Monitor *
dr z amp 在 OmegaGamesWiki™ Youtube 的最佳解答
PS4 PROのPREY(2017版)のHard Mode No Damageプレイ動画です、Part 22。
メインミッション「再起動(後半)」とサイドミッション「ミケイラ・イリュ-シンを助ける」の攻略動画です。
Side Mission 「ミケイラ・イリュ-シンを助ける」の関連行動:
・パワープラントに入ると自動受注
・冷却監視室でミケイラに会う 12:16
・タロスⅠ外部、ミケイラのオフィスで薬を回収 28:18
・ミケイラに薬を投与する 30:48
*これでミッションはクリアになります。
Side Mission 「失踪したエンジニア」の関連行動:
・ジーン・フォーレを探し出す 14:49
Part 22
・Main Mission - 再起動 その2/Reboot②
・Side Mission - ミケイラ・イリュ-シンを助ける/Assist Mikhaila Ilyushin
・難易度 - HARD
・NO DAMAGE
発見されたSide Mission:
・知るもの全てが変わる時/Everything You Know is About to Change(完了)
・盗まれたニューロモッド/Stolen Neuromods(完了)
・損傷部へのアクセス/Breach Access(完了)
・サイコトロニクスの囚人/The Psychotronics Prisoner(完了)
・ミリオンダラー・コーキングガン/Million Dollar Caulk Gun(完了)
・ガーデニングの秘けつ/Gardening Tips(完了)
・ラニの救出/Save Rani(完了)
・リフトの故障/Lift Interference(完了)
・消えた遺体/The Corpse Vanishes(完了)
・恋人の贈り物/The Lover's Gift(完了)
・ブラックボックス計画/The Blackbox Project(完了)
・黄金銃/The Golden Gun(完了)
・コックの注文/The Cook's Request(完了)
・ダニエル・ショー/Danielle Sho(完了)
・不満のある従業員/Disgruntled Employee(完了)
・タロスの密輸組織/Talos Smuggling Ring(完了)
・この指輪と共に…/With The Ring(完了)
・DR.イグウィ-/Dr. Igwe(完了)
・内部告発/Whistleblower(完了)
・サイキックウィーター/Psychic Water(完了)
・トラ箱/Drunk Tank(完了)
・ミケイラ・イリュ-シンを助ける/Assist Mikhaila Ilyushin(完了)
・ディセンバーの正体は?/Who is December?(進行中)
・コピープロテクション/Copy Protection(進行中)
・宝探し/Treasure Hunt(進行中)
・混合する信号/Mixed Signals(進行中
・失踪したエンジニア/Missing Engineer(進行中)
大事なアイテム:
・トランスクライブ:ラン・グエン 1:45
・トランスクライブ:エマニュエル・メンデズ 2:51
・[○]ガバナー1400Si、ニューロモッド、ティフォンルアー製造図面、トランスクライブ:ダンカン・クラシコフ 05:58
・ニューロモッド 8:32
・Qビームセル製造図面、冷却チャンバー(キーカード)、ニューロモッド、トランスクライブ:タリア・ブルックス 11:07
・アンチ・ラッド製造図面 11:58
・ニューロモッドx3 13:18
・ニューロモッド、V-Amp .23、空気制御室(キーカード)、ニューロモッド 15:27
・ニューロモッド 16:12
・ニューロモッド、反応炉アクセス(キーカード) 16:32
・反応炉アクセス(キーカード) 19:10
・ミケイラの免疫剤 28:22
・ニューロモッド、ニューロモッド 28:48
PREY Hard Mode No Damage Walkthrough Playlist:
⇒https://www.youtube.com/playlist?list=PL4fd59i0eA3XXA_Nyc4hNnoZbK-ceuFhv
======================
- ゲームタイトル: PREY(2017)(PS4版)
- 発売日: 2017年5月18日 (日本)
- 価格: PS4・7980円(税別)
- Genre: First-person shooter
- ESRB: Cero Z
- 開発: Arkane Studios
- 販売: ベセスダ・ソフトワークス
=======================
BETHESDA GAMES COPYRIGHT & VIDEO POLICY:
⇒http://www.bethblog.com/bethesda-video-policy/
=======================
"Copyright Disclaimer Under Section 107 of the Copyright Act 1976,
allowance is made for "fair use" for purposes such as criticism,
comment, news reporting, teaching, scholarship, and research.
Fair use is a use permitted by copyright statute that might otherwise
be infringing. Non-profit, educational or personal use tips the balance
in favor of fair use."
=======================
dr z amp 在 sublowman Youtube 的最佳解答
Brecker Bros. Composition "Some Skunk Funk" by TetsuJino
Sakurai Tetsuo , Kenji Hino(Jino) & Jay Stixx(Dr)(Bass Trio)
櫻井哲夫&日野ジーノ賢二&ジェイ スティックス
dr z amp 在 Dr. Z's NEW Z-28 Mk.II - YouTube 的推薦與評價
Could this become our next workhorse amp ? - Dr. Z's NEW Z-28 Mk.II · Key moments. View all · Featured places See more information in Google Maps ... ... <看更多>
dr z amp 在 Dr. Z Amplification - Facebook 的推薦與評價
The official Dr. Z Amplification Facebook page. drzamps.com #drzamps. ... Much More Than A Country Amp! || Dr. Z Z-Wreck Jr. Review. ... <看更多>